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A. Dynamic GUPPI

This appendix derives approximations to static and dynamic GUPPI using product margins.

A.1. Static demand and supply

In this section the GUPPI for an industry without demand or supply dynamics is derived. GUPPI
measured over multiple period is derived from first order condition of a static differentiated Bertrand
price setting game. This makes clear the nature of the approximation of GUPPI typically used in
practice when there are no demand or supply dynamics.

A.1.1. Single Period

Consider the first order conditions of two single product firms

qjt + ∆q
jjtmjt = 0 (1)

qkt + ∆q
kktmkt = 0 (2)

The optimal markup for firm j is

mjt = − qjt
∆q
jjt

(3)

The corresponding optimal margin is

µPREjt :=
mjt

pjt
= − 1

εSRjjt
(4)

Now merge j and k.
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qjt + ∆q
jjtmjt + ∆q

jktmkt = 0 (5)

=⇒ ∆q
jjtmjt = −qjt −∆q

jktmkt (6)

=⇒ mjt = − qjt
∆q
jjt

−
∆q
jkt

∆q
jjt

mkt (7)

In each period, GUPPI measures the strength of the competitive constraint internalised in the first
round of the internalisation of the relaxed demand externality

µPOSTjt :=
mjt

pjt
= − 1

εSRjjt
−

∆q
jkt

∆q
jjt

mkt

pjt
(8)

= µPREjt +GUPPIjkt (9)

A.1.2. Multiple Periods

In practice, the margins used to populate GUPPI span multiple periods. To measure pre-merger
market power accruing over multiple periods, I sum profits over the T periods

T∑
t=1

qjtmjt =−
T∑
t=1

q2
jt

∆q
jjt

(10)

Let Rj :=
∑T

t=1 qjtpjt be total revenues from sales of product j over T periods and define µPREj as the
percentage margin earned on j’s sales over T periods

µPREj :=

∑T
t=1 qjtmjt∑T
t=1 qjtpjt

=−
T∑
t=1

q2
jt

Rj

1

∆q
jjt

= −
T∑
t=1

pjtqjt
Rj

1

εSRjjt
(11)

=−
T∑
t=1

σjt
1

εSRjjt
(12)

where σjt is period t’s share of product j’s revenue over T periods.
Now merge j and k and again sum profits over the T periods

T∑
t=1

qjtmjt =−
T∑
t=1

q2
jt

∆q
jjt

−
T∑
t=1

qjt
∆q
jkt

∆q
jjt

mkt (13)

Define µPOSTj as the percentage margin earned on j’s sales over T periods once the first round effects
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of merging with product k are taken into account

µPOSTj :=

∑T
t=1 qjtmjt∑T
t=1 qjtpjt

=−
T∑
t=1

q2
jt

Rj

1

∆q
jjt

−
T∑
t=1

qjt
Rj

∆q
jkt

∆q
jjt

mkt (14)

=−
T∑
t=1

pjtqjr
Rj

1

εSRjjt
−

T∑
t=1

pjtqjt
Rj

DRjkt
mkt

pjt
(15)

=−
T∑
t=1

σjt
1

εSRjjt
−

T∑
t=1

σjtDRjkt
mkt

pjt
(16)

=µPREj +

T∑
t=1

σjtGUPPIjkt (17)

The long-run measure of the GUPPI is the revenue weighted sum of the GUPPI in each period

GUPPILRjk =
T∑
t=1

σjtGUPPI(j,k),t (18)

To obtain long-run measures of pricing pressure, an analyst can, in principle, estimate a static demand
model and back out marginal cost in each period given a model of supply in each period. Then, by
combining prices, estimated marginal costs, and estimates of diversion ratios from the demand model
the analyst can compute the revenue-weighted sum of GUPPIjkt to measure GUPPILRjk .
In practice, however, margins derived from internal accounts are used to compute price pressure in-
dices.1 Since accounts are costly to compile, financial statistics are produced periodically. Implicitly,
therefore, these margins (approximately) measure market power over multiple products and across a
period of time (i.e. brand-level annual gross margins). As such, the estimate of market power reflects
a sequence of pricing decisions for multiple products spanning several time periods.
Assuming the analyst has obtained an estimate of the percentage margin earned on sales of product
k over T periods, µ̂k, they can approximate the GUPPILRjk using DRπjk is the diverted value ratio
evaluated at (revenue) weighted average prices and market shares over T periods

GUPPILRjk ≈ DRπjkµj (19)

where DRπjk = DRjk
µkp̄k
µj p̄j

.

A.2. Dynamic case

Next, the dynamic GUPPI is derived starting from the first order conditions in the dynamic demand
and price setting model Section 2 of the main article. As for the static case, dGUPPI is derived
for a single period, then generalised to multi-period setting. Finally, analogous to the approximation
implicitly used in the a static demand and supply model, a practical approximation to a long-run
measure of dGUPPI is proposed.

1In the simplest case these are based on gross-margins produced by internal accounts. The can also be estimated from
accounting data using the methodology in [?].
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A.2.1. Single Period

Consider the first order conditions assuming there are two single product storable good firms that face
dynamic consumer demand and engage in dynamic price competition

qjt + ∆q
jjt(1 + Ψjjt)mjt+Υjjt = 0 (20)

qkt + ∆q
kkt(1 + Ψkkt)mkt+Υkkt = 0 (21)

Pre-merger firm j in period t has a mark-up

∆q
jjt (1 + Ψjjt)mjt = −qjt −Υjjt (22)

=⇒ mjt = − qjt + Υjjt

∆q
jjt (1 + Ψjjt)

(23)

Then the pre-merger margin for product j in period t is

µPREjt :=
mjt

pjt
= − 1

εSRjjt (1 + Ψjjt)
− Υjjt

∆q
jjt (1 + Ψjjt) pjt

(24)

= − 1

εLRjjt
− Υjjt

∆q
jjt (1 + Ψjjt) pjt

(25)

where εSRjjt is the short-run price elasticity of demand for product j in period t.
Now merge j and k. The first order condition for j internalising recaptured sales from k is

qjt + ∆q
jjt (1 + Ψjjt)mjt + Υjjt + ∆q

jkt (1 + Ψjkt)mkt + Υjkt = 0 (26)

qjt +
∑

i∈{j,k}

∆q
jit (1 + Ψjjt)mit +

∑
i∈{j,k}

Υjit = 0 (27)

Rearranging, gives and expression for the post-merger mark-up for product j accounting only for
first-round merger effects

mjt = − qjt
∆q
jjt (1 + Ψjjt)

−
∆q
jkt (1 + Ψjkt)mkt

∆q
jjt (1 + Ψjjt)

−
∑

i∈{j,k}

Υjit

∆q
jjt (1 + Ψjjt)

(28)

To simplify notation, let Zjkt := - Υjkt

∆q
jjt(1+Ψjj)pjt

be the effect on margins from the internalisation of
new expected revenues accruing from changes in future prices to product k as a result of pjt changing
today. Now, using this notation, the post-merger margin for product j in period t is

µPOSTjt :=
mjt

pjt
=− 1

εSRjjt (1 + Ψjjt)
−

∆q
jkt (1 + Ψjkt)

∆q
jjt (1 + Ψjjt)

mkt

pjt
−
∑

i∈{j,k}

Zjit (29)

=µPREjt +
1 + Ψjkt

1 + Ψjjt
DRjkt

mkt

pjt
+ Zjkt (30)

=µPREjt +
1 + Ψjkt

1 + Ψjjt
GUPPIjkt + Zjkt (31)

=µPREjt + dGUPPIjkt + Zjkt (32)
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This holds fixed pre-merger dynamic competition pricing strategies and is likely a lower bound on what
a merging firm can expect to gain as a result of controlling competitors dynamic pricing strategies (i.e.
promote less frequently, space out promotions from the most similar products).

A.2.2. Multiple Periods

The exercise above is repeated but with margins measured over T periods - as is observed in data. To
measure pre-merger market power over multiple periods sum profits over T periods

T∑
t=1

qjtmjt =

T∑
t=1

−
q2
jt

∆q
jjt (1 + Ψjjt)

− Υjjt

∆q
jjt (1 + Ψjjt)

qjt (33)

Then the pre-merger markup over T periods is

µPREj :=

∑T
t=1 qjtmjt∑T
t=1 qjtpjt

= −
T∑
t=1

q2
jt

Rj

1

∆q
jjt (1 + Ψjjt)

−
T∑
t=1

Υjjt

∆q
jjt (1 + Ψjjt)

qjt
Rj

(34)

= −
T∑
t=1

σjt
1

εLRjjt
+

T∑
t=1

σjtZjjt (35)

To measure post-merger market power accruing over multiple periods, again sum product j’s profits
over T periods

T∑
t=1

qjtmjt =−
T∑
t=1

q2
jt

∆q
jjt (1 + Ψjjt)

−
T∑
t=1

Υjjt

∆q
jjt (1 + Ψjjt)

qjt

−
T∑
t=1

∆q
jkt (1 + Ψjkt)mkt

∆q
jjt (1 + Ψjjt)

qjt −
T∑
t=1

Υjkt

∆q
jjt (1 + Ψjjt)

qjt (36)
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Dividing by product j’s revenues over the T periods define the post-merger margin

µPOSTj :=

∑T
t=1 qjtmjt∑T
t=1 qjtpjt

=−
T∑
t=1

σjt
1

εLRjjt
+

T∑
t=1

σjtZjjt

−
T∑
t=1

σjt
∆q
jkt (1 + Ψjkt)mkt

∆q
jjt (1 + Ψjjt) pjt

+

T∑
t=1

σjtZjkt (37)

=µPREj −
T∑
t=1

σjt
(1 + Ψjkt) ∆q

jktmkt

(1 + Ψjjt) ∆q
jjtpjt

+

T∑
t=1

σjtZjkt (38)

=µPREj +

T∑
t=1

σjt
1 + Ψjkt

1 + Ψjjt
DRjkt

mkt

pjt
+

T∑
t=1

σjtZjkt (39)

=µPREj +

T∑
t=1

σjt
1 + Ψjkt

1 + Ψjjt
GUPPIjkt +

T∑
t=1

σjtZjkt (40)

=µPREj +

T∑
t=1

σjtdGUPPIjkt +

T∑
t=1

σjtZjkt (41)

The long-run measure of the dGUPPI is the revenue weighted sum of the dGUPPI in each period

dGUPPILRjk :=
T∑
t=1

σjtdGUPPIjkt (42)

As in the static case, assuming the analyst has obtained an estimate of the percentage margin earned
on sales of product k over T periods, µ̂k, dGUPPIjk can be approximated using DRjk is the diversion
ratio evaluated at (revenue) weighted average prices and market shares over T periods

dGUPPIjk ≈
1 + Ψjkt

1 + Ψjjt
DRπjkµj (43)

A.2.3. dGUPPI Example

To illustrate how dGUPPI captures demand dynamics, consider a firm assessing the impact on profits
of its promotional pricing decisions on two substitutable products j and k over a one month planning
horizon. Suppose the firm producing product j is considering temporarily cutting its price from £15
to £10 for the current week. If it does so, it expects to generate an additional 100 sales as a result.
However, the firm expects that 20 of those sales would occur at the regular higher price of £15 within
the subsequent weeks over the next month without the price cut.
Assuming a marginal cost of £5 in all periods, 40% of short-run profits made on sales of good j
immediately following the price cut are drawn from expected profits from future profit flows. Further
suppose that the effect of the price cut of product j on product k is the loss of 10 sales today and a
further 3 sales over the next month. Assuming its price and cost remain unchanged over the period
and its sales yield a £10 margin, the firm anticipates that consumer demand dynamics will lead to an
additional 30% of losses on top of short-run profits lost on product k over the next month.
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In this simple example, only 20% of the firm’s profits are the result of sales diverted away from product
k in the period of the price change and the GUPPI is 0.1. Therefore, DDRπjk = 0.43 overstating its
short-run counterpart by 54 percent. The dGUPPI that factors in anticipated demand dynamics is
0.217 - more than double the GUPPI calibrated with contemporaneous profit movements alone. This
higher dynamic diversion ratio demonstrates that products j and k are much closer substitutes than
implied by a static short-run analysis.

B. Price Forecasting

B.1. VAR(κ)

The analyst may consider linear-in-prices κ-order Markov process as a statistical model to approximate
the price process

pt = A0 +

κ∑
s=1

Aspt−s + ut (44)

where A0 is a J-vector, each As is a J × J matrix of price coefficients for s = 1, . . . , κ and ut is a
J-vector of price shocks.
One benefit of this approach is that the price impulse response functions are constants calculated
from the coefficient matrices and estimate ∆p

t+h for h = 1, . . . ,H in each time period, t. In this case
computation of the term in the first order condition capturing the change expected present value of
revenues is simple to calculate.

Υnt := E
H∑

h=t+1

δh−t∆p
nhqh =

H∑
h=t+1

κ∑
s=1

δh−tAnsq̄ (45)

However, there are three key drawbacks. First, this model has J(1+ κJ) parameters and is ill-suited to
high-dimensional applications. Even if J is only 100 and κ = 1 then there are over 10,000 parameters
to estimate. With more than a handful of products in the choice set, regularisation methods and/or
ad hoc restrictions on the coefficient matrices may be required (i.e. assume prices follow a univariate
AR(κ) process).
Second, prices are often not observed for all products in all time periods. This might be due to a
strategic removal from the stores’ shelves, unexpected stock-outs, or a feature of the sampling pro-
cess. Missing data complicates estimation linear-in-price forecast model and requires careful use of
interpolation methods.
Finally, a linear-in-price model may be too smooth to adequately capture the effect of frequent, ir-
regularly spaced promotions. In that case, the approximation of the underlying price dynamics may
degrade.

B.2. Dynamic Factor Model

The state space representation of the dynamic factor model of the price process is

pt = ΛF t + εt (46)
F t+1 = AF t +U t+1 (47)
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where F t = [f t, . . . ,f t−κ]> is a κR vector comprising of a low dimensional set ofR-vector, f t, capturing
underlying price trends or ’factors’. Also, Λ = [L,0, . . . ,0] is a J×κR matrix and L =

[
λ>1 , . . . ,λ

>
J

]>
be a J×Rmatrix of factor loadings of factor loadings. Standard normalisations are imposed: ff

>

T = IR
and L>L is diagonal where f := [f1, . . . ,fT ] is the R× T vector of price factors.
In the factor VAR, the coefficient matrix is κR× κR

A =


A1 A2 · · · Aκ−1 Aκ
I 0 · · · 0 0

0 I
. . .

...
...

...
. . . . . . 0

...
0 · · · 0 I 0

 (48)

Finally, εt is J-vector of price shocks and U t+h = [ut+h, 0 . . . , 0]> is a κR vector containing innovations
to F t+h where [

εt
ut+h

]
∼ N

([
0
0

]
,

[
Σpp 0

0 Σff

])
(49)

where Σpp and Σff are the covariance matrices for equations (46) and (47), respectively.
Define covariance matrix of current prices and the h-step ahead price factors conditional on current
price factors in period t

cov

([
pt
F t+h

]
| F t

)
=

[
V pp V h

pf

V h
fp V h

ff

]
(50)

Hereafter, to not overload on notation conditioning variables are suppressed. The components of the
covariance matrix are

V pp
J×J

= E
[
(ΛF t + εt) (ΛF t + εt)

>
]

(51)

= ΛF tF
>
t Λ> + Σpp (52)

V h
ff

R×R
= E

(AhF t +

h∑
r=0

ArU t+r+1

)(
AhF t +

h∑
r=0

ArU t+r+1

)> (53)

= AhF tF
>
t A

h,> +
h−1∑
r=0

ArΣffA
r,> (54)

V h
pf

J×R
= E

(ΛF t + εt)

(
AhF t +

h∑
r=0

ArU t+r+1

)> (55)

= ΛF tF
>
t A

h,> (56)
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V h
fp

R×J
= Et

[(
AhF t +

h∑
r=0

ArU t+r+1

)
(ΛF t + εt)

>

]
(57)

= AhF tF
>
t Λ> (58)

From the definition of the conditional Normal distribution

F t+h | pt,F t ∼ N(µ̄h, Σ̄
h
) (59)

where

µ̄h = AhF t + V h
fp (V pp)

−1 (pt −ΛF t) (60)

Σ̄
h

= V h
ff − V h

fp (V pp)
−1 V h

pf (61)

So

E
[
pt+h | pt

]
= ΛE [F t+h | pt] + E [εt+h | pt] (62)

= ΛAhF t + ΛΣh
fp

(
Σh
pp

)−1
(pt −ΛF t) (63)

Then

dE
[
pt+h | pt

]
dpt

= ΛV h
fp (V pp)

−1 (64)

=⇒ E∆p
t+h = ΛAhF tF

>
t Λ>

[
ΛF tF

>
t Λ> + Σpp

]−1
(65)

Then the dynamic pricing term in the first order condition is

E
H∑

h=t+1

δh−t∆p
nhqh =

H∑
h=t+1

δh−tE
[
∆p
nhqnh

]
(66)

=

H∑
h=t+1

δh−tE
[
∆p
nh

]
E [qnh] + cov

(
∆p
nh, qnh

)
(67)

=
H∑

h=t+1

δh−tΓnhq̄n (68)

where assumption A1 is imposed in the final line, then

Γt+h = ΛAhF tF
>
t Λ>

[
ΛF tF

>
t Λ> + Σpp

]−1
(69)
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